HOLIDAY ASSIGNMENT - 1 ## STD. - XI ### SUB - MATHS 1. Prove that $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \cdot \sin^2 \theta$. - 2. If $\tan x = \frac{3}{4}$ and x lies in the 3rd quadrant then, find the value of $\sec x$. - 3. Prove that $\sec^2 \theta + \csc^2 \theta \ge 4$. - 4. Find the value of $\tan 15^{\circ}$. - 5. Prove that : $\frac{\cos 17^0 + \sin 17^0}{\cos 17^0 \sin 17^0} = \tan 62^0.$ - 6. Find the value of $\sin 135^{\circ}$. $cosec 225^{\circ}$. $\tan 150^{\circ}$. $\cot 315^{\circ}$. - 7. If $\tan \alpha = \frac{m}{m+1}$, $\tan \beta = \frac{1}{2m+1}$, find the value of $\alpha + \beta$. - 8. Prove that $\sin^2 A = \cos^2 (A B) + \cos^2 B 2\cos(A B) \cdot \cos A \cdot \cos B$. - 9. Prove that $\sin 10 \cdot \sin 30 \cdot \sin 50 \cdot \sin 70 = \frac{1}{16}$. - 10. If $a \sin \theta = b \sin \left(\theta + \frac{2\pi}{3}\right) = c \cdot \sin \left(\theta + \frac{4\pi}{3}\right)$, then prove that, ab + bc + ca = 0. - 11. Prove that $\cos 6\theta = 32 \cos^6 \theta 48 \cos^4 \theta + 18 \cos^2 \theta 1$. - 12. Prove that $\tan 4x = \frac{4 \tan x (1 \tan^2 x)}{1 6 \tan^2 x + \tan^4 x}$. ## HOLIDAY ASSIGNMENT - 2 ## STD. - XI #### SUB - MATHS - 1. If $\sin \theta + \csc \theta = 2$, find the value of $\sin^n \theta + \csc^n \theta$. - 2. Find the value of $\sin 23^{\circ} \cdot \cos 67^{\circ} + \cos 23^{\circ} \cdot \sin 67^{\circ}$. - 3. Find the value of $\tan 105^{\circ}$. - 4. If $\tan A \tan B = x$, $\cot B \cot A = y$, prove that $\cot(A B) = \frac{1}{x} + \frac{1}{y}$. - 5. If $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha \beta) = \frac{5}{13}$, α , β lie between 0 and $\frac{\pi}{4}$, then prove that $\tan 2\alpha = \frac{56}{33}$. - 6. If $\cos A = \frac{2}{3}$, then find the value of $\cos 2A$. - 7. Find in degrees, the angle between the hour hand and the minute hand of a clock at half past three. - 8. Prove that: $\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x$. - 9. If $\cos(\alpha + \beta)$. $\sin(\gamma + \delta) = \cos(\alpha \beta)$. $\sin(\gamma \delta)$, prove that, $\cot \alpha \cdot \cot \beta \cdot \cot \gamma = \cot \delta$. - 10. If $\alpha + \beta = 90^{\circ}$, find maximum and minimum values of $\sin \alpha \cdot \sin \beta$. - 11. If $\tan x = \frac{3}{4}$, $\pi < x < \frac{3\pi}{2}$, find the values of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$, $\tan \frac{x}{2}$. - 12. Prove that $\cos^3 A + \cos^3 (120 + A) + \cos^3 (240 + A) = \frac{3}{4} \cdot \cos 3A$. ## HOLIDAY ASSIGNMENT - 3 ## STD. - XI ### SUB - MATHS 1. If $\cot x = -\frac{5}{12}$, x lies in the 2nd quadrant, find the value of $\csc x$. - 2. If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, prove that, $\cos \theta \sin \theta = \sqrt{2} \sin \theta$. - 3. If $3 \tan A \cdot \tan B = 1$, prove that, $2 \cos(A + B) = \cos(A B)$. - 4. Prove that $\sin^2\left(\frac{\pi}{8} \frac{A}{2}\right) = \frac{1}{\sqrt{2}} \cdot \sin A$. - 5. If $\theta + \Phi = \alpha$ and $\tan \theta = K \cdot \tan \Phi$, then prove that, $$\sin(\theta - \Phi) = \frac{K-1}{K+1} \cdot \sin \alpha .$$ - 6. If $a \sin \theta = b \cos \theta$, then find the value of $\sin 2\theta$. - 7. Express $48^0 \ 37' \ 30''$ in radians . - 8. Prove that: $(\cos A \cos B)^2 + (\sin A \sin B)^2 = 4 \cdot \sin^2 \frac{A B}{2}$. - 9. Prove that : $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$. - 10. Prove that $\cos 20 \cdot \cos 40 \cdot \cos 60 \cdot \cos 80 = \frac{1}{16}$. - 11. Prove that $\cot 7 \frac{1}{2}^0 = (\sqrt{3} + \sqrt{2})(\sqrt{2} + 1)$. - 12. Prove that $\frac{\sec 8\theta 1}{\sec 4\theta 1} = \frac{\tan 8\theta}{\tan 2\theta}$. #### **ASSIGNMENT: 4 & 5** SOLVE THE QUESTIONS FROM NCERT MISC. EXERCISE (TRIGONOMETRY) $\,$